Plug-in hybrid electric vehicles (PHEVs) can be powered by gasoline, grid electricity, or both. To explore potential PHEV energy impacts, a three-part survey instrument collected data from new vehicle buyers in California. We combine the available information to estimate the electricity and gasoline use under three recharging scenarios. Results suggest that the use of PHEV vehicles could halve gasoline use relative to conventional vehicles. Using three scenarios to represent plausible conditions on PHEV drivers’ recharge patterns (immediate and unconstrained, universal workplace access, and off-peak only), tradeoffs are described between the magnitude and timing of PHEV electricity use. PHEV electricity use could be increased through policies supporting non-home recharge opportunities, but this increase occurs during daytime hours and could contribute to peak electricity demand. Deferring all recharging to off-peak hours could eliminate all additions to daytime electricity demand from PHEVs, although less electricity is used and less gasoline displaced.
The similarity algorithm calculates how much two contents in the system are similar to one another. So far, similarity is calculated based on similarity of the project type, area of interest and user type. Generally, if two contents have more parameters in common they are more similar to each another. More information.
content
description
similarity (%)
created: Rok Rudolf, 31.03.2010 14:03:13 last modified: Rok Rudolf, 07.04.2010 15:28:57
Copyright to all material on FEHRL Knowledge Centre are reserved. FEHRL Knowledge Centre's content (documents, reports, presentations, etc) can be cited, or excerpted in a sensible and proportionate manner, or e.g. included in non-commercial, on-line news digests, with proper reference (including a link) to FEHRL Knowledge Centre as the source, and to the author, by name, of any referenced post